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ABSTRACT 
We characterize the optimal (revenue maximizing) auction 
for sponsored search advertising.  We show that a search 
engine’s optimal reserve price is independent of the 
number of bidders.  Using simulations, we consider the 
changes that result from a search engine’s choice of reserve 
price and from changes in the number of participating 
advertisers.   
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1. INTRODUCTION 
The Generalized Second Price Auction (GSP) is a widely 
used mechanism for selling advertisements on Internet 
search engines.  Each time a user enters a search term into 
a search engine, a GSP-type auction allocates the 
advertising space within that user’s search results.  There 
are hundreds of millions of separate GSP auctions 
conducted every day.  

1.1 Sponsored Search Auctions Generally 
Our analysis considers a simplified model of sponsored 
search auctions.  We assume that each advertiser knows its 
value per click.  We take all advertisers to have the same 
click-through rate (CTR) in a given position, and we 
assume that CTR’s by position are common knowledge.  
Advertisers’ marginal utility per click is non-decreasing in 
the number of clicks, and all advertisers maximize expected 
profit (defined as the total value of clicks received minus 
total payments in the auction).   

Our analysis considers GSP auctions with reserve prices.  
Only advertisers who bid at least the reserve price are 
allowed to participate in an auction.  Within a given 
keyword market, the lowest bidder pays the search engine’s 
reserve price.  In contrast, for each advertiser other than the 

lowest, the advertiser’s per-click payment results from the 
bid of the advertisers immediately below:  The nth highest 
bidder pays the bid of n+1st bidder.1  [9] gives further 
details on the GSP mechanism.  

Search engines’ revenues from GSP-type auctions are on 
the order of ten billion dollars per year.  As a result, these 
advertising auctions are receiving considerable attention 
from practitioners and academics.  For example, [1] 
considers the role of bid increment, [10] and [13] consider 
the implications of ranking rules, and [1], [5], and [14] 
consider the effect of budgets.  [4] and [16] use simulations 
to study sponsored search auctions. 

1.2 Our Contribution 
This paper studies two important aspects of GSP auctions: 
the role of reserve price and the role of market depth.  As 
far as we know, neither of the two has been investigated in 
the previous literature.  First, in section 2, we study the role 
of optimal reserve prices.  We show that a search engine’s 
optimal reserve price is independent of the number of 
bidders.  We then proceed to simulations to measure the 
benefits of optimal reserve prices in a variety of market 
conditions. 

Second, in section 3, we consider the effect of “market 
depth” – the number of competing advertisers – on search 
engine revenues.  All else equal, the more advertisers that 
bid for a particular keyword, the higher are search engine 
revenues for that keyword.  Our simulations let us measure 
this effect.  We then separate out the two effects by which 
arrival of a new advertiser increases a search engine’s 
revenues: The new advertiser makes payments of his own 
(the direct effect), and the new advertiser spurs other 
advertisers to increase their bids (the indirect effect). 

We consider both reserve prices and market depth in part 
because these seemingly-disparate topics share an 
underlying endogeneity: We show that, in both cases, a 
change has a first-order indirect effect.  Furthermore, in the 
context of single-unit auctions, [7] shows that the 

                                                                 
1 In search engines’ implementation, the nth bidder plays the bid 
of the n+1st bidder plus a minimum bid increment of $0.01.  We 
set that increment to $0 for expositional clarity. 



incremental revenue from attracting an additional bidder is 
at least as large as the revenue increase from using the 
optimal reserve price.  Our simulations indicate that with 
realistic parameter values, this result does not hold in GSP 
multi-unit auctions.    

2. RESERVE PRICES AND MARKET 
OUTCOMES 
Even after choosing other market parameters (e.g. use of 
GSP rather than a first-price mechanism), search engines 
can adjust their reserve price with relative ease.  For 
instance, Yahoo! previously increased reserved price from 
5 cents to 10 cents in most markets.  Google now uses 
variable reserve price. [12]  Nonetheless, we know of no 
theoretical analysis of optimal reserve prices in sponsored 
search markets.  So profit-seeking search engines may 
reasonably wonder: What reserve price maximizes 
expected revenues? 

In general, an optimal mechanism is a mechanism that 
maximizes the expected revenues of the seller.  In some 
markets, optimal mechanisms are well-known.  But the 
auction for search advertisements is a multi-unit auction, 
and optimal mechanism design in multi-unit auctions are an 
open problem.2  Recently [17] characterized optimal 
auctions for a class of environments where bidders have 
one-dimensional types.  We combine that result with 
equilibrium analysis of [9] to show that the GSP auction 
with an optimally-chosen reserve price is an optimal 
mechanism.  Furthermore, in Proposition 1, we show how 
to find the optimal reserve price. 

We then proceed to simulations.  We decompose a search 
engine’s benefit from optimal reserve prices into two 
components: First, the lowest-bidding advertiser’s payment 
increases penny-for-penny with the reserve price.  This is 
the direct effect of an increased reserve price.  Second, the 
lowest bidder’s increased bids spur other advertisers to 
increase their payments in turn, as detailed in section 2.4.  
This is the indirect effect of the reserve price.  We proceed 
by developing a simulation methodology to predict these 
effects as a function of market primitives.  We then 
compare the relative size of the direct and indirect effects. 

2.1 A Numerical Example 
Before we proceed to estimation of the benefit of optimal 
reserve prices on search engine revenues, we offer a 
numerical example to acquaint readers with the mechanics 

                                                                 
2 Myerson’s [15] proves that adding a reserve price to otherwise 
efficient second price auction is an optimal mechanism in the case 
of symmetric bidders.  But Myerson’s result does not extend to 
multi-unit auctions in general. The optimal mechanism design in 
multi-unit auctions remains an open problem.  See [8] for recent 
bounds on revenues in multi-unit auctions. 

of GSP bidding as well as to provide greater intuition on 
the effects of reserve prices. 

Consider an auction with two advertisers and two slots.  
Suppose the top slot yields 300 clicks per hour, and the 
bottom slot 200.  Advertiser A values a click at $1, while B 
values a click at $0.70.  The reserve price is $0.10. 

Following [9], we compute that the envy-free bid of 
advertiser B is $0.30.  To see why, consider B’s 
perspective on possible changes of A’s bid.  If A were to 
revise his bid to fall ε below B’s bid, B would pay his own 
bid ($0.30), and he would move into first position, where 
he would receive 300 clicks per hour.  B would then realize 
hourly surplus of (300)($0.70-$0.30)=$120.  But B gets 
exactly this same payoff in the second position with a 
payment of $0.10 (the reserve price), because (200)($0.70-
$0.10)=$120 also.  So B is indifferent between the two 
outcomes – exactly the envy-free concept from [9]. 

Now suppose the reserve price increases to $0.40.  Then 
B’s envy-free point increases to $0.40.  $0.40 is the envy-
free bid because (300)($0.70-$0.50)=200($0.70-
$0.40)=$60.   

Notice that the increase in reserve price has two distinct 
effects.  First, since B remains in the lowest position 
(where payment equals the reserve price), B’s payment 
increases from $0.10 per click to $0.40 per click.  So B’s 
total payment increases from $20 to $80.  Second, A’s per-
click payment changes (itself set by B’s bid) increases in 
the same way that B’s bid increases, namely from $0.30 to 
$0.50.  A’s total payment therefore increases from $90 to 
$150.3   

2.2 Simulation Methodology 
To test the effects of search engines’ reserve prices, we run 
simulations on a range of advertiser valuations, and we 
measure the search engine revenues that result from each 
reserve price regime.  When considering optimal reserve 
prices, we let a search engine select the reserve price with 
highest expected revenues (taken across a range of 
simulation valuations from a given distribution).  By 
comparing search engine revenues under no-reserve, low-
reserve, and optimal reserve regimes, we can assess how 
reserve prices affect revenues under a variety of market 
conditions. 

Our simulations require a model of advertiser equilibrium 
behavior.  Such a model lets us predict advertiser bids 
(hence payments and ultimately search engine revenues) as 
a function of simulated valuations drawn from a 
distribution of valuations.  For this purpose, we use the 

                                                                 
3 In this example, we choose numerical values where increasing 
the reserve price yields identical increases in the bids of both 
bidders.  In general, that is not the case. 



equilibrium concept developed in [9].  The idea is that in 
equilibrium each advertiser bids at an envy free point—a 
point where an advertiser is exactly indifferent between 
remaining in his current position and trading places with a 
bidder above him.  In this equilibrium, an increase in 
reserve price can lead to changes in bids of all advertisers, 
not just advertisers that were previously bidding below the 
new reserve price.  

Except where otherwise indicated, our simulations use the 
following parameters: 5 advertisers; advertiser valuations 
drawn from a log-normal distribution with mean 1 and 
standard deviation 0.25; $0.10 reserve price; 1000 
simulation iterations.  Throughout, we assume that click 
through rate (CTR) in each position are common 
knowledge.4   

2.3 Reserve Price and Search Engine Revenue 
Search engines can set reserve prices to increase their 
revenues.  Consider Figure 1, showing simulations of a 
market with five advertisers, with valuations drawn from a 
log-normal distribution.   

The bell-shaped curve in Figure 1 represents the search 
engine revenues as a function of reserve price.  With these 
market parameters, the search engine’s optimal reserve 
price is $0.73.  With optimal reserve price the search 
engine can increases its revenue by 68% relative to the case 
of zero reserve price and by 52% relative to $0.10 reserve 
price.  Such an increase offers a major benefit to the search 
engine – albeit at a cost to advertisers, in that advertiser 
surplus falls 59% when the search engine sets its optimal 
reserve (rather than no reserve).   

So long as a search engine keeps its reserve price below the 
valuation of the lowest bidder, increases in the search 
engine’s reserve price only affect a transfer from 
advertisers to search engine, but do not affect total surplus. 
Notice that total surplus remains flat through the reserve 
price of approximately 0.6.  However, if the reserve price 
exceeds the valuation of one or more bidders, bidders drop 
out, reducing total surplus. 

 
Figure 1. Per-click search engine revenue, advertiser 

surplus, and total surplus as a function of reserve price  
                                                                 
4 We use estimated CTRs from [6], to the extent available.  
Beyond the range reported in [6], we assume that CTRs decay 
geometrically at the same rate as the average in [6]. 

2.4 Advertiser Payments 
When a search engine increases its reserve price, the first 
advertisers affected are those whose bids fall below the 
new minimum.  But other advertisers are affected too.   

Consider the response of the second-lowest advertiser as 
the reserve price increases.  The lowest-ranked advertiser is 
increasing his payment as the reserve price rises, and 
eventually the lowest-ranked advertiser will observe that 
with only a small further increase in his bid, he could 
become second-lowest rather than lowest.  To discourage 
such a jump by the lowest-ranked advertiser, the second-
lowest advertiser must increase his bid somewhat.  Then 
the third-lowest advertiser must increase his bid too, and 
the increases cascade upwards, with a nonzero impact on 
even the top advertiser. 

Figure 2 shows these effects.  The advertiser shown in the 
top-most plot is the advertiser with the highest valuation, 
who is allocated the highest position and makes the highest 
payment per click (no matter the search engine’s reserve 
price).  Lower-ranked advertisers fall below.  Notice 
penny-for-penny increase for the bottom-most advertiser, 
as the reserve price increases.  Other advertisers’ payments 
increase less sharply.   

 
Figure 2. Advertisers’ total payments as a function of 

the search engine’s reserve price 
As the reserve price increases, payments increase more 
sharply on a percentage basis for low-ranked advertiser 
than for higher advertisers.  But higher-ranked advertisers 
receive far more clicks than lower-ranked advertisers, due 
to the greater prominence of top advertising positions.  In 
general the total increase in payment from top-ranked 
advertisers is more than the total increase from low-ranked 
advertisers. 

Figure 3 shows the total increase in each advertiser’s 
payment, when a search engine sets its reserve price 
optimally versus when it sets a reserve price of $0.10.    
(Here again, simulations consider a market with five 
advertisers and log-normal valuations.)  Comparisons with 
a reserve price of $0 are even more stark.  Crucially, the 
lowest-ranked advertiser is not the hardest hit by the 
increase in reserve prices.  Instead, higher-ranked 
advertisers end up facing a larger increase in payments, due 
to their larger volume of clicks.  



 
Figure 3. Total increase in each advertiser’s payment, 

when reserve price is set optimally versus at $0.10 

2.5 When Optimal Reserves Matter Most 
Certain market conditions make search engines’ choice of 
reserve price particularly significant, while other conditions 
render the choice of reserve price less important for search 
engine revenues. 

Figure 4 shows the percent increase in search engine 
revenue (relative to revenue with a $0.10 reserve price) as a 
function of the number of advertisers participating in a 
given keyword market.  A search engine’s gain from 
setting an optimal reserve price is particularly large when 
few advertisers are bidding. 

 
Figure 4. Percent increase in search engine revenue 

when search engines set optimal reserve prices 

2.6 Optimal Mechanism  
So far we described simulations that find optimal reserve 
prices for GSP auctions.  In this section, we show that 
optimal reserve prices yield an efficient mechanism.  We 
also show that the optimal reserve price depends only on 
the distribution from which bidder valuations are drawn – 
but not on the number of bidders or on the rate at which 
click-throughs decline from position to position.   

Fully defining the GSP auction requires specifying the 
order of moves and the information structure.  This section 
takes bidders’ valuations to be private IID draws from a 
known distribution, and assumes that the formal structure 
of the game is as in [9] (section IV). 

Let vi denote the value of bidder i, and let αj denote the 
CTR of position j.  The value of position j to advertiser i is 
αjvi. Assume that bidder values are IID draws from a 
distribution that satisfies the following regularity condition: 
1-F(v)

f(v)   is a decreasing function of v.  Let v* denote the 

solution of 1-F(v)
f(v)  =v. 

Proposition.  A GSP auction with a reserve price v* is an 
optimal mechanism.  

Proof. The proof is based on combining equilibrium 
analysis of GSP from [9] with the results obtained in [17].  
([17] is in turn a generalization of Myerson’s classic [15].) 

Following [17], we define the “generalized” virtual value 
of each bidder for each object (position).  The generalized 
virtual value of advertiser i for position j is  
w(j,i)=αj(vi-

1-F(v)
f(v)  ).  [17] shows that the optimal mechanism 

is an incentive-compatible mechanism that allocates objects 
so that the sum of the virtual values of all bidders is 
maximized.   

It is easy to see that the optimal mechanism never allocates 
a position to an advertiser for whom virtual value, vi-

1-F(v)
f(v)  , 

is negative.  Generalized virtual value is proportional to 
virtual value, and α’s are all positive.  Hence allocating 
objects to agents with negative virtual values  will reduce 
the sum of generalized virtual values.  So the optimal 
mechanism only allocates positions to advertisers with 
nonnegative virtual values. 

Now let us show that assortative matching between 
positions and agents with positive virtual values will 
maximize the sum of virtual values.  It suffices to note that 
if an agent with higher value is ever placed below an agent 
with a lower value, exchanging positions of these agents 
would increase the sum of virtual values.  Setting reserve 
price at v* guarantees that only bidders with positive 
virtual values will be allocated positions.  (If the number of 
positions equals or exceeds the number of bidders with 
positive virtual valuations, all bidders with positive virtual 
values get positions allocated to them.)   

It then remains to be shown that GSP with a reserve price 
can lead to equilibrium where bidders are assortatively 
sorted into positions based on values.  It follows from the 
proof of Theorem 2 of [9] that GSP with reserve price 
implements an assortative matching between advertisers 
and positions. 

Remark. A similar approach yields a truthful revenue-
maximizing auction.  The following modification of VCG 
is a truthful optimal mechanism.  Payments are calculated 
as follows: With n slots available, introduce n+1 “shadow” 
bidders, each with a valuation of v*.  Compute payments in 
the auction using the standard VCG formula, considering 
shadow bidders as if they were real bidders.  This ensures 
that no bidder with a negative virtual value will be assigned 
a slot.5 

                                                                 
5 The equivalence of this mechanism to GSP with reserve price 
follows from an argument identical to the one in [9]. 



3. MARKET DEPTH 
We use the term “market depth” to refer to the number of 
advertisers vying for advertising associated with a given 
keyword.  We say a keyword market is “deep” if that 
keyword is sought by many advertisers.  Conversely, a 
market is “shallow” if it is of interest to only a few. 

Search engines seem to recognize the importance of market 
depth in their continued recruitment of new advertisers.  
For example, Google offers a $20 reward whenever a 
participating web site refers a new AdWords advertisers. 
[11]  Furthermore, both Google and Yahoo offer 
substantial signup bonuses to new advertisers. [1]  
Recruiting advertisers makes sense: Each advertiser brings 
a budget to be spent on search advertising, and search 
engines predictably seek access to these additional funds.  
But market characteristics make some new advertisers 
more valuable than others.   

3.1 Simulation Setup 
Our simulation methodology lets us investigate the effect 
of market depth on search engine revenues. 

Consider the effect on search engine revenues when the 
number of bidders increases by one, i.e. from n to n+1.  Of 
course, this effect depends on the valuation of the new 
bidder.  We consider two distinct approaches.  First, we let 
the new bidder draw his valuation from the same 
distribution as the existing bidders.  Such a new bidder is 
identical to the others, in expectation, because all draws are 
IID.  Second, we order a market’s n advertisers from 
highest to lowest, and we add an n+1st advertiser with 
valuation of ε below the nth advertiser. This approach 
reflects a view of the new bidder as a marginal bidder – 
one whose low valuation makes him least likely to 
participate. 

3.2 Market Depth and Search Engine 
Revenue  
The incremental value of adding an advertiser declines as 
the number of bidders grows.  Figure 5 shows this effect, 
plotting the marginal value of an additional advertiser 
(vertical axis) against the number of advertisers already 
present (horizontal axis).  Separate plotted curves reflect 
advertisers with valuations drawn from the two 
distributions set out in section 3.1.  The figure confirms 
that a marginal bidder provides greatest benefit to a search 
engine when the bidder participates in a market with few 
existing bidders. 

 
Figure 5. Percent increase in search engine revenue 
when a marginal bidder arrives, a function of the 

number of bidders initially present  

3.3 Direct and Indirect Revenue Effects of 
Increasing Market Depth 
When a new advertiser arrives, a search engine’s revenue 
increases for two distinct reasons.  First, the new advertiser 
makes payments for the advertising it purchases.  This is 
the direct effect of the new advertiser’s arrival.  Second, 
the new advertiser causes an increase in competition for 
affected search terms, prompting other advertisers to 
increase their bids.  This is the indirect effect of the new 
advertiser’s arrival. 

Our simulations let us compare the size of these effects.  
The result of the comparison depends on the distribution of 
valuations of the newly-arriving advertisers.   

Figure 6 analyzes outcomes6 when new advertisers are IID, 
drawn from the same distribution as other advertisers.  The 
payments from the newly-arrived advertiser (the first bar in 
each group) remains relatively constant as the number of 
advertisers increases.  But with more advertisers, the search 
engine receives less additional revenue when a new 
advertiser arrives.  (Notice the downward trend in the third 
bar in each group).  Furthermore, when the market is 
sufficiently deep, the arrival of a new advertiser actually 
reduces the sum of other advertisers’ payments.  (Notice 
the negative values of the second bar in each group.)  
These reductions reflect that the arrival of an additional 
advertiser leaves less advertising for others to buy.  In 
short, when advertiser valuations are IID and when several 
advertisers are already present, the direct effect of a new 
advertiser’s arrival is the dominant effect, while indirect 
effects are small. 

                                                                 
6 This section reports revenues “per search” rather than “per 
click” in order to account for the underlying endogeneity of 
clicks.  As more advertisers arrive, more ads can be shown (i.e. in 
space otherwise left blank), and hence more clicks can occur.  We 
seek to minimize this effect, in order to focus on revenues 
resulting from competition among advertisers We therefore make 
the conservative assumption that the CTR of the first position is 
independent of the number of ads shown on the page. 



 
Figure 6. Direct and indirect per-search revenue effects 

of a new advertiser – when new advertisers are IID 
In contrast, Figure 7 analyzes the case in which new 
advertisers have systematically low valuations.  Here, the 
arrival of a new advertiser tends to have little direct effect, 
because the advertiser always takes the lowest position and 
pays the minimum bid.  But the new advertiser’s presence 
nonetheless causes other advertisers to increase their bids – 
an indirect effect that our simulations indicate can be 
relatively large. 

 
Figure 7. Direct and indirect per-search revenue effects 

of a new advertiser – when new advertisers have low 
valuations 

3.4 Market Depth versus Optimal Reserve  
Comparing Figure 4 with Figure 5 lets us investigate the 
celebrated [7] result that adding another bidder yields more 
revenue than setting an optimal reserve price.   

Indeed, our simulations suggest that adding another bidder 
is not always preferable to setting an optimal reserve, in 
this multi-unit context.  For example, Figure 4 reports that, 
with five bidders, setting an optimal reserve price increases 
search engine revenues by approximately 30%.  In contrast, 
Figure 5 shows that, with five bidders, an additional IID 
bidder increases search engine revenues by approximately 
20% – less than 30%, contrary to the result in [7].   

Importantly, the result from [7] need not hold in this 
context.  [7] derives from properties of single-unit auctions, 
but here multiple advertising positions are available.  With 
multiple positions available, adding another bidder need 
not bring as much competition as if only a single position 
were offered. 

4. CONCLUSION 
We have shown that a GSP auction with a reserve price is 
an optimal mechanism, and we have shown how to 
calculate the optimal reserve price.  We have used 

simulations to evaluate when an optimal reserve price is 
most valuable, and we have compared the revenue benefits 
of an optimal reserve price to the benefits from a marginal 
bidder.  We have separated these revenue effects into their 
direct and indirect components; we have shown that 
indirect components are first-order and often significantly 
larger than direct components. 

Our simulations let us examine the effects of changes in 
market conditions.  This is a flexible methodology, well-
suited to a variety of questions and policy experiments.   
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