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In analyses of sponsored search auctions for
online advertising, it is customary to model the
dynamic game of incomplete information by con-
sidering a static games of complete information.
This approach is used in Edelman, Ostrovsky
and Schwarz (2007) (EOS), Varian (2007), and
the subsequent literature.

Modeling complex interactions in uncertain
environments as games of complete information
has a long history. For example, the Bertrand
model of oligopolistic competition posits that
companies know their competitors’ costs based
on their experience from prior interactions.

The use of a static game of complete informa-
tion often offers important benefits. For one, it is
tractable – avoiding complex multi-period infor-
mation sets in a dynamic game. Furthermore, a
suitably-chosen static game can capture impor-
tant characteristics of the underlying dynamic
game. When a game is repeated over an ex-
tended period, there is good reason to think par-
ticipants will learn many characteristics of their
counterparts – supporting the use of a complete
information model.

Yet the use of a static game of complete in-
formation is also unsatisfying. There is no clear
way to identify which (if any) equilibria of the
static game of complete information are a rele-
vant approximation of the equilibria of the dy-
namic game of incomplete information.

In this paper, we consider a dynamic game
of incomplete information used to sell sponsored
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search advertisements. We also consider a cor-
responding static game of complete information.
We analyze the underlying dynamic game of in-
complete information, and we establish an upper
bound on the revenue of any equilibrium of any
dynamic game in this environment. We then ex-
clude equilibria of the corresponding static game
with revenue that exceeds this upper bound. See
Section D.

We use this equilibrium selection criteria to
assess optimal design of search engine advertis-
ing platforms. We characterize optimal reserve
prices and show that the optimal reserve price is
independent of the number of bidders and inde-
pendent of the rate at which click-through rate
declines over positions. See Section E.

Our analysis of reserve prices also lets us as-
sess their welfare effects. We separate the effects
of reserve price increases into direct effects (caus-
ing the lowest value bidder to face a higher pay-
ment) and indirect effects (inducing other bid-
ders to increase their bids, thereby increasing
others’ payments). We show that most of in-
cremental revenue from setting reserve price op-
timally comes not from the low bidder’s direct
effect, and not from indirect effects on other low
bidders, but rather from the indirect effects on
high bidders. This result may appear counter-
intuitive because top bidders’ large valuations
place them, in an important sense, “furthest
from” the reserve price. See Section II.

I. Environment and Mechanisms

A. Environment

Our model for the sponsored search environ-
ment follows EOS. We consider a market for ad-
vertisements triggered by searches for a single
keyword. Each period, a slate of ads is shown to
users, and the world lasts for T periods. Each
position has a commonly-known click-through
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rate (CTR), and higher positions have higher
CTR. In expectation, an ad in position i receives
�i clicks per period, and the number of clicks de-
pends on position only. In a given period, each
ad can appear in at most one position.

There are N advertisers. Advertiser k values
a click at sk, which is k’s private information,
does not change over time, and does not depend
on the position where the ad appears. Bidder
values are i.i.d. drawn from a commonly-known
distribution with support [0, s], pdf f(.), and cdf
F (.) satisfying the regularity condition from My-
erson (1981). In particular, we assume virtual

valuation  (s) = s− 1−F (s)
f(s)

is decreasing in s.

The per-period payoff of advertiser k in posi-
tion i is �i(sk − pk), where pk denotes the pay-
ment per-click made by advertiser k in that pe-
riod. The total payoff of advertiser k is the sum
of k’s period payoffs, i.e.

∑T
t=1 �k(t)(sk − pk(t))

where k(t) denotes the position of advertiser k
in period t and pk(t) denotes the payment made
by advertiser k in period t.

B. The Dynamic Game of Incomplete
Information

We begin with a stylized model that captures
the dynamic aspects of the mechanism used in
practice. Search engines sell advertisements us-
ing real-time generalized second price (GSP)
auctions. As each search occurs, an auction is
conducted to determine which ads should be dis-
played to the corresponding user. Advertisers
are ranked based on bids: all else equal, the
higher the bid, the higher the position assigned
to the corresponding advertiser, and hence the
more clicks the advertiser receives. If there are
more positions than advertisers, a position is al-
located to all advertisers whose bid exceeds the
reserve price. The per-click payment of the ad-
vertiser in the bottom position equals the re-
serve price. For each other advertiser, the per-
click payment equals the bid of an advertiser
who is ranked one position lower. (For exam-
ple, the advertiser in the third position pays an
amount equal to the fourth-largest bid.) The
mechanisms used by Google, Yahoo!, and Mi-
crosoft adCenter build on this GSP approach
– though they add variations such as adjusting
prices based on ad quality. See e.g. Abrams and
Schwarz (2008).

Advertisers can change their bids at any time.
Each period, advertisers observe positions of
their competitors. By seeing other advertis-
ers’ positions, each advertiser updates its beliefs
about others’ valuations, influencing bids in fu-
ture periods. When choosing a bid, an advertiser
may consider how its action will influence future
play of other advertisers. Historic bid informa-
tion is relevant in equilibrium because an adver-
tiser’s best response depends on its expectation
of bidding behavior of other advertisers. This in-
formation structure creates a complex dynamic
game of incomplete information.

Our key observation is that we can establish
an upper bound on revenue in any equilibrium
of any dynamic game in this environment with-
out characterizing the equilibrium of a dynamic
game. Importantly, the environment is fairly
simple – letting us characterize an optimal mech-
anism for this environment, thereby bounding
revenue in any dynamic mechanism in this en-
vironment without solving for an equilibrium of
a dynamic game. An optimal mechanism is pre-
sented in Section D.

C. Approximation with a One-Shot Game
of Complete Information

The dynamic mechanism described above is
sufficiently complex that it is difficult or per-
haps impossible to solve analytically for an equi-
librium strategy. The literature on sponsored
search auctions sidesteps the complexity of the
dynamic game of incomplete information by
modeling it as a one shot game of complete in-
formation. The complete information game cor-
responding to the incomplete information game
retains payoffs and the actions exactly as in the
previous section. However, there are two impor-
tant differences: the complete information game
lasts only one period, and the per-click values of
all bidders are common knowledge. The justi-
fication for considering a complete information
model is that in a dynamic game of incomplete
information, players learn each others’ values,
making complete information plausible in the
long-run. This justification follows longstand-
ing practice in the industrial organization liter-
ature, modeling price competition among firms
as a one-shot game with common knowledge of
each firm’s production costs.
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The one-shot game of complete information
has multiple equilibria. Some of these equilibria
can be ruled out by the envy-free restriction in-
troduced in EOS and Varian (2007). The envy-
free condition requires that no bidder wishes to
exchange positions with a bidder ranked above
him. Note that the payment of the advertiser
in position i − 1 equals the bid of advertiser i,
so envy freeness means that for each advertiser,
�i(sk−pk) ≥ �i−1(sk−bk) where pk is advertiser
k’s payment per click in his current position, and
bk is k’s current bid. EOS and Varian (2007)
show that the equilibrium with VCG-equivalent
payoffs yields the lowest revenues of all envy-free
equilibria. Both EOS and Varian identify the
lowest-revenue envy-free (LREF) equilibrium as
the most plausible. Varian offers an informal
argument for the LREF equilibrium, while the
main result of EOS shows that in a generalized
English auction, the LREF equilibrium is the
unique outcome. Cary et al. (2007) show that
if bidders play myopic strategies in a repeated
GSP auction, the system converges to the LREF
equilibrium. A number of subsequent papers use
the LREF equilibrium as the solution concept
for sponsored search auctions.

It remains uncertain whether the LREF equi-
librium is the “right” equilibrium to select in
GSP auctions. Athey and Nikopolev (2010) use
noise in estimates of bidders’ click-through-rate
to pin down the equilibrium. Thompson and
Leyton-Brown (2009) computationally explore
the set of all equilibria in complete informa-
tion GSP. This approach would be unnecessary if
a convincing equilibrium selection criteria were
available. Borgers et al. (2007) consider var-
ious Nash equilibria of the complete informa-
tion game and suggest that a profit-maximizing
search engine should be able to coordinate bid-
ders on an equilibrium with revenue greater than
LREF. However, our Proposition 4 shows that
when a reserve price is chosen optimally, a search
engine cannot coordinate bidders on an equilib-
rium with revenues higher than in the LREF
equilibrium.

D. The Non-Contradiction Criteria
(NCC)

As long as the outcome of the incomplete in-
formation game quickly converges to an equi-

librium of the complete information game, one
can view a complete information game as a
valid approximation of the incomplete informa-
tion game. This suggests an equilibrium selec-
tion criteria: An equilibrium of complete infor-
mation game can be ruled out if there does not
exist an equilibrium of the corresponding game
of incomplete information that converges to the
same outcome. As a result, expected revenue
in a “plausible” equilibrium of complete infor-
mation game integrated over all possible real-
izations of bidder values cannot exceed the ex-
pected revenues in some equilibrium of the in-
complete information game. We call this the
Non-Contradiction Criteria (NCC).

Let us define NCC precisely. Denote by R(T )
the expected revenue in the highest revenue per-
fect Bayesian equilibrium of the incomplete in-
formation game that lasts for T periods. Let R
denote the (largest possible) expected per period
equilibrium revenues in an incomplete informa-
tion game R = 1

T
limT→∞R(T ). Consider equi-

librium per-period revenues in an equilibrium �
of the complete information game. Denote by
r�(s) the expected revenues in Nash equilibrium
� of a complete information GSP auction where
values of bidders are given by vector s.

DEFINITION 1: A NE � of a complete in-
formation game fails NCC if it generates
greater expected revenues than any equilib-
rium of the corresponding incomplete infor-
mation game. That is, � fails NCC if∫
s1
...

∫
sN
r�(s)f(s1)...f(sN )ds1...dsN>R.

The idea behind NCC differs from the logic of
most equilibrium refinements. Refinements such
as subgame perfection, perfect Bayesian equilib-
ria, and intuitive criteria result from ruling out
strategies that are consistent with NE yet im-
plausible in the actual game. In contrast, NCC
calls for comparing two distinct games, say G
and Γ. Γ is a game of complete information
that is believed to approximate the behavior of
players in a corresponding game of incomplete
information G. Some equilibria of Γ may cor-
rectly capture behavior in G while others may
not. If we can establish some fact that is true in
any equilibrium of G (e.g. the upper bound on
equilibrium revenues), this fact can be used to
narrow the set of relevant equilibria of Γ. Note
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that NCC is not a restriction on the set of equi-
libria in Γ; NCC says nothing about reasonable
equilibria in Γ. Rather, NCC restricts equilibria
of Γ when Γ is meant to capture behavior in G.

We use NCC to analyze sponsored search ad-
vertising. But the underlying idea is general.
Many models of complete information games are
simplified representations of complex dynamic
games of incomplete information. In these cases,
the set of plausible equilibria of a static game
should be considered in the context of the cor-
responding incomplete information game. Our
insight is that even if the incomplete informa-
tion game is very complex, it may be possible
to bound the set of equilibria of the incomplete
information game.

E. Optimal Mechanism for the Incomplete
Information Environment

Even though the sponsored search environ-
ment allows for multistate dynamic mechanisms,
we will show that a one-shot generalized English
auction is an optimal mechanism.

To apply NCC, we must find an upper bound
on revenue in the dynamic mechanism. In this
section, we describe the optimal mechanism for
the incomplete information environment.

Consider the generalized English auction for
the incomplete information environment. The
auction is run once, and positions are allocated
for the entire game. Following EOS, imagine
a clock showing the current price, and contin-
uously increasing over time. The price begins
at the reserve price, and all advertisers willing
to pay at least the reserve price participate in
the auction. As the clock ticks upwards, adver-
tisers can drop out. The auction is over when
the next-to-last advertiser drops out. The last
remaining advertiser is placed in the best (high-
est) position.

In general, optimal auction design for the
sale of multiple heterogeneous objects remains
an open problem. However, the structure of
sponsored search makes it possible to extend
the single-object results of Myerson (1981) to
cover multiple items. Although the equilibrium
price per click is higher in top positions, each
advertiser’s value for each position can be de-
rived from a single variable – the advertiser’s
value per click. Ulku (2009) extends the Myer-

son framework to the case of multiple heteroge-
neous objects when bidders’ private information
is one-dimensional.1

Obtaining an optimal mechanism is a key
intermediate result in our analysis. Simi-
larly, Roughgarden and Sundararajan (2007)
and Athey and Elison (2009) also obtain an
optimal mechanism as an intermediate result,
but for entirely different purposes. Iyengar and
Kumar (2006) consider computational methods
to estimate optimal auctions when clickthrough
rates are arbitrary. In contrast, the structure of
clickthrough rates assumed in our model allows
us to obtain an analytic result.

The following proposition characterizes the
optimal mechanism2:

PROPOSITION 2: The generalized English
auction with reserve price r∗is an optimal
mechanism with reserve price r∗ that solves
r∗ − 1−F (r∗)

f(r∗) = 0.

PROOF:

The optimal direct revelation mechanism can
be characterized using the same technique as
in a single object case, except that the prob-
ability of receiving an object is replaced with
the expected number of clicks that a bidder re-
ceives. Denote xk(r) the expected number of
clicks received by bidder k when the realized vec-
tor of bidder values is given by r = (r1...rN),
and let f(r) denote the pdf of vector r and
tk(0) the expected payment of bidder k when his
value is zero. With this modification, formula
5.12 from Krishna (2002) gives seller revenues
in a direct revelation mechanism:

∑N
k=1 tk(0) +∫

r
(
∑N
k=1  (rk)xk(r))f(r)dr. Thus, only bidders

with positive virtual valuations are allocated a
positive expected number of clicks, and bidders
with higher virtual (and actual) valuations are
allocated higher positions. Thus, the generalized
English auction achieves the same allocation and
revenue as the optimal direct revelation mecha-
nism.

1Thus, even if bidders differ in exogenous quality,
an optimal mechanism can be constructed.

2We thank Michael Ostrovsky for suggesting a
dramatic simplification of the version of this proof
that appeared in the 2006 draft of this paper.
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COROLLARY 3: The optimal reserve price in
the generalized English auction is independent of
the number of bidders, number of slots being auc-
tioned, and the rate of decline in click-through
rate from position to position.

F. Applying NCC

Consider application of NCC to a complete
information GSP auction with reserve price r∗.

PROPOSITION 4: In a complete information
GSP auction with a reserve price of r∗, from
among all envy-free equilibria only the lowest
revenue equilibrium survives NCC. Furthermore,
this equilibrium is unique.

PROOF:
According to EOS Theorem 1, all envy-free

equilibria of the GSP auction yield revenues that
are at least as large as revenue in the correspond-
ing VCG auction. Yet Proposition 2 shows that
these revenues equal the optimal revenue in the
incomplete information environment. All but
one envy-free equilibria of the complete infor-
mation GSP auction yield higher revenues than
R (optimal revenue for incomplete information
environment) and hence are ruled out by NCC.

II. Reserve Prices and Individual
Bidder Payoffs

In this section, we explore the impact of re-
serve prices in an equilibrium of the generalized
English auction where strategies are continuous
in player types.

A. Bidders’ Cost Increases

In this section, we will show that raising the
reserve price creates an indirect effect far larger
than the direct effect.

The reserve price directly affcts the lowest
bidder. As long as there are more positions
than bidders, the lowest bidder pays the re-
serve price.) The reserve price may also indi-
rectly affect other bidders because change in re-
serve price may impact equilibrium behavior of
all players.

Consider an increase in a reserve price by an
amount Δr = rnew − rold. Suppose that there

are more slots than advertisers, that n bidders
had values greater than rold, and that j bidders
drop out as a result of the increase in reserve.

In the following proposition, we compare the
revenues resulting from a change in reserve price.

PROPOSITION 5: When reserve price in-
creases, the total payment of every advertiser
who remains (except the last) increass by an
identical amount.

SKETCH OF PROOF:
For the full proof, see the online appendix.
Advertiser n receives slot n and pays reserve

price r. Changing the reserve price by Δr =
r1 − r0 changes n’s total payment �nΔr.

Advertiser n − 1 pays a per-click fee pn−1 =
bn. With reserve price r, advertiser n bids bn =
sn− �n

�n−1
(sn− r). (See Theorem 2 of EOS.) So

the change in reserve price causes n − 1’s per-
click payment to change by

Δpn−1 = Δbn = b1n − b0n

= (sn − �n
�n−1

(sn − r1))

− (sn − �n
�n−1

(sn − r0))

=
�n
�n−1

Δr

Advertiser n − 1 receives �n−1 clicks, so
his total payment changes by �n−1Δpn−1 =
�n−1( �n

�n−1
Δr) = �nΔr.

Recursing upwards yields an identical cancel-
lation of terms at each step – hence the same to-
tal payment change, �nΔr, for each advertiser.

Now consider the case in which the changed
reserve r1 exceeds the valuations of the lowest j
advertisers. Unable to achieve a positive profit,
these advertisers exit. Advertiser n−j takes the
role of n in the preceding analysis. n − j’s per-
click payment change is irregular, but each other
advertiser’s total payment changes by �n−jΔr.

The following corollary shows that indirect
effects are in some sense larger than direct ef-
fects: The higher the position, the greater the
expected incremental revenue from reserve price.

COROLLARY 6: As reserve price increases,
the expected increase in revenue from position
k exceeds the expected increase from k + 1.
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B. Welfare Implications

Under realistic assumptions, an optimal re-
serve price can yield a notable increase in search
engine revenue. For example, Yahoo CEO Sue
Decker stated in a Q3 2008 earnings call that
reserve price was the “most significant” cause of
the 11% increase in Yahoo’s revenue per search.
Ostrovsky and Schwarz (2010) use an experi-
ment to measure the impact of reserve prices.

In simulations, we explored how reserve price
impacts bidders and the seller. The plot below
shows simulations with five advertisers whose
values are drawn from a log-normal distribution
with mean 1 and standard deviation 0.25.

 

The graph reveals that moving from a zero
reserve price to optimal reserve price leads to a
small decline in total surplus and a significant
increase in search engine revenues.

III. Conclusion

Reserve prices may have an important impact
on search advertising marketplaces. But the ef-
fect of reserve price can be opaque, particularly
because it is not always straightforward to com-
pare “before” and “after” conditions. Proposi-
tion 5 assesses the distributional consequences,
revealing the counterintuitive across-the-board
effects of reserve price increases that might have
seemed to target low bidders exclusively.

Our paper also offers insight on equilibrium
selection. By establishing bounds on any equi-
librium of a complex game, we can reduce the
set of plausible equilibria of a simpler game used
to understand the more complex game. An ap-
proach similar to ours may apply in many con-
texts where a one-shot game offers a simplified
view of repeated interactions, e.g. Cournot and
Bertrand models of industry competition.

We see this paper as an example of applied
theory. We address the important applied prob-
lem of setting an optimal reserve price in a large
and growing market, and we analyze mecha-
nisms that are widely used in practice. Yet our

theoretical contribution – equilibrium selection
criteria – also grounds our results. Moreover,
our counterintuitive revenue finding – an indi-
rect effect larger than the direct effect – stands
at the intersection of theory and application.
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Online Appendix: Proof of
Proposition 5

PROPOSITION 5: When reserve price in-
creases, the total payment of every advertiser
who remains (except the last) increass by an
identical amount.

PROOF:

Setup. Advertisers are 1..n, and slots are
also 1..n. Initial reserve price r0 changes to some
new reserve price r1. Suppose for now that the
new reserve price r1 remains sufficiently low that
no advertiser is priced out of the market, i.e.
r1 ≤ sn.

Advertiser n. Advertiser n receives slot n
and pays the reserve price r. So when the re-
serve price increases from r0 to r1, advertiser
n’s per-click payment increases by Δr = r1−r0.
Advertiser n receives �n clicks, so advertiser n’s
total payment increases by �nΔr.

Advertiser n-1. The per-click fee pn−1 paid
by advertiser n−1 is determined by the per-click
bid bn of advertiser n. With reserve price r, ad-
vertiser n bids bn = sn − �n

�n−1
(sn − r). (This

is the base case of Theorem 2 of EOS.) So when
the reserve price changes from r0 to r1, adver-
tiser n− 1’s change in per-click payment equals
advertiser n’s change in per-click bid, which is

Δpn−1 = Δbn = b1n − b0n

= (sn − �n
�n−1

(sn − r1))

− (sn − �n
�n−1

(sn − r0))

=
�n
�n−1

Δr

Advertiser n − 1 receives �n−1 clicks. So when
the reserve price increases by Δr, advertiser n−
1’s total payment increases by �n−1Δpn−1 =
�n−1( �n

�n−1
Δr) = �nΔr.

Advertiser n-2 and the general case. Ad-
vertiser n− 2 pays a per-click fee pn−2 given by
bn−1. With reserve price r, advertiser n−1 bids
bn−1 = sn−1 − �n−1

�n−2
(sn−1 − bn). (This is the

general case of Theorem 2 of EOS.) So when the
reserve price changes from r0 to r1, advertiser

n− 1’s change in bid is

Δbn−1 = b1n − b0n

= (sn − �n−1

�n−2
(sn − b1n))

− (sn − �n−1

�n−2
(sn − b0n))

=
�n−1

�n−2
(b1n − b0n)

=
�n−1

�n−2
(Δbn)

=
�n−1

�n−2
(
�n
�n−1

(r1 − r0))

=
�n
�n−2

Δr

Advertiser n − 2 receives �n−2 clicks. So ad-
vertiser n − 2’s total payment increases by
�n−2Δbn−1 = �n−2

�n
�n−2

Δr = �nΔr. Recurs-

ing upwards to advertiser 1 confirms that each
advertiser’s total payment increases by the same
amount, �nΔr.

Reserve price that excludes one or more
advertisers. We now allow an increase in re-
serve price such that one or more advertisers is
priced out of the market (relaxing the assump-
tion in the first paragraph of the proof).

Suppose the increased reserve r1 exceeds ad-
vertiser n’s valuation sn. Then advertiser n can
never achieve a positive profit by buying ads;
n would have to pay more than his valuation.
So n exits. What about the other advertisers?
Advertiser n − 1 now takes on the role of n in
the preceding analysis. Δpn−1 = Δbn = r1 − b0n
which is irregular and cannot be fully simpli-
fied. But advertisers n− 2 and above follow the
pattern of the preceding section, and for each
of those advertiser, total payment increases by
�n−1Δr.

More generally, if the increased reserve price
leads j advertisers to drop out, then the total
increase of advertisers 1 through n − j − 1 is
�n−jΔr.


